Formation and early evolution of massive black holes

نویسنده

  • Piero Madau
چکیده

The astrophysical processes that led to the formation of the first seed black holes and to their growth into the supermassive variety that powers bright quasars at z ∼ 6 are poorly understood. In standard ΛCDM hierarchical cosmologies, the earliest massive holes (MBHs) likely formed at redshift z ∼ > 15 at the centers of low-mass (M ∼ > 5×10 M⊙) dark matter “minihalos”, and produced hard radiation by accretion. FUV/X-ray photons from such “miniquasars” may have permeated the universe more uniformly than EUV radiation, reduced gas clumping, and changed the chemistry of primordial gas. The role of accreting seed black holes in determining the thermal and ionization state of the intergalactic medium depends on the amount of cold and dense gas that forms and gets retained in protogalaxies after the formation of the first stars. The highest resolution N-body simulation to date of Galactic substructure shows that subhalos below the atomic cooling mass were very inefficient at forming stars.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Massive Black Holes: formation and evolution

Supermassive black holes are nowadays believed to reside in most local galaxies. Observations have revealed us vast information on the population of local and distant black holes, but the detailed physical properties of these dark massive objects are still to be proven. Accretion of gas and black hole mergers play a fundamental role in determining the two parameters defining a black hole: mass ...

متن کامل

The Early Evolution of Massive Black Holes

Massive black holes (MBHs) are nowadays believed to reside in most local galaxies. Studies have also established a number of relations between the MBH mass and properties of the host galaxy such as bulge mass and velocity dispersion. These results suggest that central MBHs, while much less massive than their hosts (∼ 0.1%), are linked to the evolution of galactic structure. When did it all star...

متن کامل

Black Holes in Galaxy Mergers: the Formation of Red Elliptical Galaxies

We use hydrodynamical simulations to study the color transformations induced by star formation and active galactic nuclei (AGN) during major mergers of spiral galaxies. Our modeling accounts for radiative cooling, star formation, and supernova feedback. Moreover, we include a treatment of accretion onto supermassive black holes embedded in the nuclei of the merging galaxies. We assume that a sm...

متن کامل

Supermassive Black Holes and Galaxy Morphology

This review addresses one of the important topics of current astrophysical research, namely the role that supermassive black holes play in shaping the morphology of their host galaxies. There is increasing evidence for the presence of massive black holes at the centers of all galaxies and many efforts are directed at understanding the processes that lead to their formation, the duty cycle for t...

متن کامل

The Formation and Evolution of the First Massive Black Holes

The first massive astrophysical black holes likely formed at high redshifts (z ∼ > 10) at the centers of low mass (∼ 10 M⊙) dark matter concentrations. These black holes grow by mergers and gas accretion, evolve into the population of bright quasars observed at lower redshifts, and eventually leave the supermassive black hole remnants that are ubiquitous at the centers of galaxies in the nearby...

متن کامل

Primordial Structure of Massive Black Hole Clusters

We describe a mechanism of the primordial black holes formation that can explain the existence of a population of supermassive black holes in galactic bulges. The mechanism is based on the formation of black holes from closed domain walls. The origin of such domain walls could be a result of the evolution of an effectively massless scalar field during inflation. The initial non-equilibrium dist...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007